太阳,这颗距离地球最近的恒星,有诸多未解之谜待揭开。近日,全球首台中红外波段太阳磁场专用观测设备(AIMS望远镜)正式启用,人类观测太阳又多了一双“慧眼”。
“十五五”规划建议提出,“加强基础研究战略性、前瞻性、体系化布局,提高基础研究投入比重,加大长期稳定支持。”支撑高水平科技自立自强的源头创新,离不开基础研究的突破。AIMS望远镜的建成启用,填补了国际上中红外波段太阳磁场观测的空白,也为后续大型天文设备在高海拔地区的建设提供了重要参考。
“从0到1”的探索,打开太阳观测新窗口
太阳大气是由磁场主导的巨大等离子体环境,提高太阳磁场观测精度,对太阳物理基础研究、空间天气预报等都有十分重要的意义。中国科学院国家天文台研究员、AIMS项目负责人邓元勇介绍,“可以说,磁场是太阳物理的第一观测量。”
过去,对太阳磁场的观测以分辨率为第一追求,对测量精度重视不够,国际上的大口径太阳望远镜测量精度普遍在100高斯量级。随着科学研究不断深入,学界逐渐认识到,太阳上的弱磁场研究同样重要,只重视分辨率远远不够,不光要“看得更清”,还要“量得更准”。
“就像拍照片和拍X光片时看到的人体不同,在不同波段观测到的太阳磁场反映的物理过程也不一样。”中国科学院国家天文台研究员、AIMS项目技术负责人王东光说,“AIMS望远镜就是要补上太阳磁场观测在中红外波段缺失的一环。”
“我们以精确的磁场测量为突破口,抢占中红外波段太阳磁场观测先机,确保我国在太阳物理前沿观测阵地上的领先地位。”锚定目标抓紧干,邓元勇带领团队进行攻关。
将磁场测量精度提升至优于10高斯量级;研制出国际上首台既有超高光谱分辨率,又具有成像功能的中红外傅里叶光谱仪,光谱分辨率指标提升至国内原有水平的156倍……自2015年启动研制以来,AIMS望远镜实现了多项关键技术突破。
每一项技术突破的过程,都犹如啃下一块硬骨头。以偏振测量技术为例,团队在可见光波段偏振测量领域已有40余年的技术积累,但是转向中红外波段偏振测量方向,却得从头起步。
当时,国际上没有可用的中红外偏振测量装置,甚至连可用红外波片等关键元器件都没有,同样也没有成熟的偏振检测设备和方法。王东光回忆说,“选材料、探索加工工艺、研制检测仪器,都是从零开始。经过不断调研,我们找到了适合红外偏振测量的硒化镉双折射晶体材料,摸索出波片的抛光工艺,研发出了国际上最大口径的硒化镉中红外波片。”
“做基础研究,最重要的是敢于创新、敢为人先。”邓元勇心里始终憋着一股劲,“我们要以站在国际最前列为目标,如果花了10年做一个设备,结果做出来是‘第二’‘第三’,这样的事情没有意义。”
协同创新,汇聚合力攻坚克难
AIMS望远镜的研制,是一次多学科联合攻关、有组织科研的成功实践。国家天文台总体协调,研制偏振测量系统、8—10微米成像终端系统、探索科学数据分析处理方法、开展工程基建;上海技术物理研究所研制傅里叶光谱仪;西安光学精密机械研究所负责望远镜引导光学系统;云南天文台、昆明物理研究所、南京天文仪器有限公司等多单位合作参与。任务分工协作,项目有序进行。
“一台大型设备的研制,涉及多学科多领域,往往由多个科研院所联合开展,需要准确理解彼此的设计要求,才能保证设备各个部分顺利对接。”王东光说,“我们从最开始就注重顶层设计,将指标、功能进行了深度细分,明确相关技术接口,因此整个项目过程比较顺利,没有出现设计上的返工问题。”
在各方协同努力下,AIMS望远镜的红外终端科学仪器光谱仪和8—10微米成像光路(含探测器芯片)及真空制冷系统等核心部件全部国产化,实现了相关技术的自主可控,体现了我国天文仪器的自主创新能力。
太阳观测设施对选址要求极高:日照时间长是必要条件;红外设备要求气候干燥,避免水汽对观测造成影响;空气越稀薄,探测效果越好……“我们先后调研了5个点位,最终确定了青海冷湖赛什腾山。”邓元勇说。
当地的支持是推进科研项目建设的关键一环。“设施得考虑运行维护,相应的基础设施就不能少。”回忆起选址过程,邓元勇对地方的执行力感触很深,“我们的设施建在山上,人能爬上去,但设备上不去,当地政府就用直升机协助运输。在确定选址后两年左右,基础设施条件就已经完全跟上了。”
青春绽放在高原,传承弘扬科学家精神
“年轻人是建设现场的主力,真正动手去安装、调试,大多是这些年轻人。”谈到团队里的青年科研人员,王东光颇有几分自豪。
在高海拔地区建造设备,需要克服高原高寒、缺氧、物资稀缺等困难。“长达几个月的时间里,我们早晨6点不到就从距离台址80公里的住处出发,赶在道路施工前到达山顶,等施工结束后再回来,到镇里已经是晚上10点。通电之前,在山上吃泡面是常态,能用煤炉煮锅热面条,已经是高级待遇。”王东光说,“即便这样,团队里的年轻人自始至终都没有退缩,也从不抱怨条件艰苦,而是想方设法推进进度。”
AIMS项目团队成员、博士后沈宇樑承担了大量一线工作。作为团队里的90后,他全程参与了望远镜的装调检测工作,并为项目建设贡献了不少聪明才智。有一次,沈宇樑和同事们在山下已经将望远镜的各个部件安装调试过一轮,但到了山顶,望远镜再次集成后,成像质量却明显下降。
“于是,我们先搭建检测光路,重新校验了检测仪器,然后逐个排查影响因素,最终确认是低温导致光学镜面面形发生变化。”沈宇樑说。
找到问题后,前后方联动,研制单位快速设计技术路线,模拟低温检测环境,一点点摸索改进工艺,历时两个多月最终解决了低温影响成像质量的问题。
调试及科学试观测期间,AIMS望远镜已成功获取多个中红外波段的太阳耀斑数据,为揭示太阳剧烈爆发中物质与能量转移机制、研究磁能积累与释放提供了新数据支持。“下一步,我们将把AIMS望远镜维护和运行好,围绕其开展前沿科学研究。”邓元勇说。
加快高水平科技自立自强,离不开“从0到1”的探索勇气,也离不开久久为功的坚持。从遥远的太阳到脚下的高原,一台望远镜的建设见证中国基础研究的自立自强,也望见通向科技强国的未来之路。