• 最近访问:
发表于 2025-12-02 01:06:51 股吧网页版
肾癌AI模型VS传统评分!83%误判患者被精准“纠错”
来源:上观新闻

  近日,上海交通大学医学院附属仁济医院泌尿科郑军华教授、翟炜研究员团队联合多中心力量,在肾癌精准预后领域取得重大突破。团队研发的多模态预测复发评分(MPRS)模型,成功发表于Nature旗下全球数字医学顶尖期刊npjDigitalMedicine,为透明细胞肾细胞癌(ccRCC)患者的复发风险评估与个体化治疗提供了关键支撑。

  肾细胞癌是泌尿系统高发恶性肿瘤,其中透明细胞肾细胞癌占比达70%。尽管手术是主要治疗手段,但约20-30%的患者术后会出现复发转移。当前临床常用的Leibovich评分、UISS评分、KEYNOTE-564风险分层等工具存在明显局限,例如仅依赖肿瘤大小、TNM分期等临床病理特征,无法整合多模态预后信息;而分子检测类模型成本高、难普及;更重要的是,上述工具往往易出现“风险误判”——要么低估高风险患者导致治疗不足,要么高估低风险患者造成过度治疗,给患者带来身心与经济双重负担。

  针对这一临床痛点,研究团队整合国内六家中心及TCGA数据库共1648例患者的临床特征、术前增强CT影像与术后病理全切片图像,创新构建了MPRS多模态AI模型。与单一模态模型及经典临床工具(Leibovich评分、UISS评分、KEYNOTE-564临床试验的风险分类)相比,该模型展现出压倒性优势:内部验证队列C指数达0.886,外部验证队列达0.838,3年与5年复发预测AUC值稳定在0.829以上,且在不同中心、不同设备数据中均保持优异性能,校准度与稳健性远超现有工具。

  更值得关注的是,MPRS模型实现了精准的风险再分层:成功将83.3%被KEYNOTE-564误判为低风险的复发患者重新归为高风险,避免错失辅助治疗时机;同时将57.7%误判为中/高风险的非复发患者调整为低风险,杜绝不必要的治疗损伤。通过SHAP分析与Grad-CAM可视化技术,模型还能精准识别肿瘤不规则边缘、坏死区域等关键预后特征,其判断逻辑与临床病理认知高度契合,进一步验证了结果的可靠性。

  为推动临床转化,团队采用常规诊疗中易获取的CT与病理图像数据,无需额外增加分子检测等高昂成本,且基于轻量化ResNet架构设计,大幅降低临床部署门槛。该模型不仅能帮助医生制定个性化随访方案与治疗策略,还为肾癌临床研究的风险分层提供了标准化工具,有望重塑ccRCC的诊疗流程。

郑重声明:用户在财富号/股吧/博客等社区发表的所有信息(包括但不限于文字、视频、音频、数据及图表)仅代表个人观点,与本网站立场无关,不对您构成任何投资建议,据此操作风险自担。请勿相信代客理财、免费荐股和炒股培训等宣传内容,远离非法证券活动。请勿添加发言用户的手机号码、公众号、微博、微信及QQ等信息,谨防上当受骗!
作者:您目前是匿名发表   登录 | 5秒注册 作者:,欢迎留言 退出发表新主题
温馨提示: 1.根据《证券法》规定,禁止编造、传播虚假信息或者误导性信息,扰乱证券市场;2.用户在本社区发表的所有资料、言论等仅代表个人观点,与本网站立场无关,不对您构成任何投资建议。用户应基于自己的独立判断,自行决定证券投资并承担相应风险。《东方财富社区管理规定》

扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-61278686 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:4000300059/952500